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We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is de-
signed for analysis of microscopy images which contain large collections of small regions of interest
(ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST
capabilities have been expanded to allow use in a large variety of problems including analysis of bio-
logical tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures.
MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabili-
ties, and is highly flexible allowing incorporation of specialized user developed analysis. We describe
the unique advantages MIST has over existing analysis software. In addition, we present a number
of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force
microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866687]

I. INTRODUCTION

There has been a lot of progress in developing tech-
niques for large area self-assembly of nanostructures.1–5

These structures have been characterized by scanning mi-
croscopy techniques such as Scanning Electron Microscopy
(SEM), Atomic Force Microscopy (AFM), and Scanning
Tunneling Microscopy (STM).6–10 Morphological and lattice
information extracted from these micrographs are used to un-
derstand novel structural, magnetic, and electrical properties.
However, most characterizations are only qualitative due to
lack of proper tools for uniform and truly quantitative analy-
sis. The main obstacle to developing the necessary tools is the
difficulty in effectively segmenting images with large num-
ber of regions of interest (ROIs). Many of the most com-
monly used software packages, such as NIH ImageJ,11 have
only rudimentary segmentation algorithms which are unable
to properly analyze complex and often noisy imaging data.

Publications on Anodic Aluminum Oxide (AAO) and
nanostructures developed using AAO intermediaries often do
not have automated and standardized image analysis. Most of-
ten, claims about quality, order, and even size distribution are
qualitative and are based on visual examination rather than a
set algorithm. Attempts at resolving these problems by intro-
ducing a standardized segmentation method have been made,
however most of these tools still did not proliferate and often
do not feature a convenient interface.12–14 They generally had
disadvantages such as poor segmentation efficiency, inabil-
ity to find proper region of interest edges, or lack of further
quantitative analysis.

In this paper, we present Microscopy Image Segmen-
tation Tool (MIST) which we have developed for periodic
nanostructure analysis. This tool provides both an efficient
segmentation method for a large number of microscopy
problems, as well as analysis tools for morphological and
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lattice properties of the nanostructures. The tool, written in
MATLAB and C++, can be easily integrated with further
user-defined analysis, allowing for great flexibility and well
defined quantitative results. The software has been packaged
in a convenient Graphical User Interface (GUI) and follows
an intuitive workflow (Fig. 1). MIST can perform quantita-
tive analysis of a large spectrum of physical, chemical, and
biological problems.

II. SEGMENTATION ALGORITHM

MIST uses a robust multistep segmentation algorithm
which utilizes both per pixel intensity information as well as
morphological filtering. The algorithm makes two assump-
tions about the underlying imaging data. First, MIST as-
sumes that there is local but not necessarily global contrast
between ROI and background. This means that significantly
overlapped ROIs are not well segmented however changes in
background intensity across the image are corrected. Second,
MIST assumes that ROI areas have a Gaussian-like distribu-
tion, which is true for most ROI types; however, if the area
distribution is multimodal (has many peaks), certain ranges
of ROI sizes can be excluded.

The full segmentation algorithm is as follows. For an
input image I:

1. Median filter15 pixel intensity using a 5 × 5 pixel
window.

2. Compute a locally normalized image ĨN using a window
of size N:

〈Ix,y〉N = 1

(N + 1)2

x+N/2∑
i=x−N/2

y+N/2∑
j=y−N/2

Ii,j ,

〈σx,y〉N =
√√√√ 1

(N + 1)2 − 1

x+N/2∑
i=x−N/2

y+N/2∑
j=y−N/2

(Ii,j − 〈Ix,y〉N ),

Ĩx,y,N = Ix,y − 〈Ix,y〉N
〈σx,y〉N .
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FIG. 1. (a) Data processing flowchart for MIST. (b) Screenshot of MIST
after segmentation of a porous alumina membrane fabricated via two-step
anodization and pore widening.

3. Compute the mean (μI) and standard deviation (σ I) of
intensities in ĨN .

4. Threshold ĨN at intensities ranging from μI – 3 σ I to μI
+ 3 σ I with a step size of 1/2 σ I to produce 13 black and
white images BWk.

5. Erode each BWk with a 3 × 3 pixel square.
6. Compute the mean (μBWi) and standard deviation

(σBWi) of the areas of 4-connected pixel groups for
each BWi.

7. Remove all elements from BWi whose area is more than
3 σBWi away from μBWi.

8. Dilate each BWi with a 3 × 3 pixel square. If the num-
ber of 8-connected pixel groups changes from step 5, go
back to step 5. If the number of groups does not change,
sum all BWi to produce a new image Iint.

9. Apply manual threshold Iint to produce a new image
If. In practice, the cutoff is usually 7 (corresponding to
blocks that have pixel intensities more than μI).

10. Erode If with a disk of radius 2.
11. Fill inside 8-connected pixel groups of If.
12. Label all 8-connected pixel groups in If.
13. Dilate all labeled objects in If with a disk of radius 2.

Segmentation is done in two main steps. First, a per-
pixel normalization of local intensity (steps 1 and 2).16 Sec-
ond, an area-based filtering of normalized regions (steps 3–8).
Figure 2 presents a graphical representation of the segmenta-
tion algorithm. The algorithm requires three inputs additional
to the raw image. First, whether the regions of interest are
“dark” or “light.” Second, the per-pixel normalization length
scale (N). Third, the value at which the final threshold (step
9) is performed.

In the remainder of the paper results using MIST’s built
in segmentation algorithm will be presented for a variety
of physical systems, imagining techniques, and conditions.
However, certain problems, such as segmentation of objects
with significant overlap or segmentation of a particular class
of ROI in an image with multiple similar sized ROI classes,
require a more advanced segmentation capability. This can
be achieved by users because the segmentation algorithm
is written modularly and can be easily changed/replaced
while not affecting other MIST capabilities. Important alter-
native segmentation methods can be derived from erosion,12

edge detection,17 watershed transformations,18 and machine
learning techniques.16

FIG. 2. (a) Raw SEM image of Ni nanodots on Si substrate produced
using AAO template. (b) Normalized image (after step 2 in the algo-
rithm). (c) Morphologically filtered image (Iint from step 8 in the algorithm).
(d) Binary threshold on the morphologically filtered image (after step 9 in the
algorithm). (e) Final segmentation (green outlines) superimposed on the raw
image. Red ellipses indicate area of minor overlap between nanodots which
were nonetheless correctly segmented. (f) Zoom in of (e) showing the overlap
between dots.

III. ANALYSIS TOOLS

MIST is used both with built-in and custom user-defined
analysis tools. Raw results of the segmentation and of the
built-in analysis can be accessed using MATLAB software.
Writing additional modules for MIST can also be done in
MATLAB. A unique and important feature of MIST is the
variety of built-in analysis tools that come with the soft-
ware (Fig. 3) that are designed to capture parameters com-
monly cited in the literature on AAO and other self-assembly
techniques.

The center-to-center radial two-point correlation function
(Fig. 3(f)) describes the long range order of the ROI. Two use-
ful quantities that can be extracted from the correlation func-
tion are the nearest neighbor distance, which is the location of
the first peak, and the domain size. We estimate the domain
size by considering that the correlation functions consist of
oscillations due to lattice properties (which we estimate as
the standard deviation of the data in a window of size N) and
from small random oscillations which are estimated by fitting
a model of Additive White Gaussian Noise (AWGN).19 In par-
ticular, we define the domain length scale r as the smallest r
for which the following is true:

exp

(
− (σr,N − σAWGN )2

2σAWGN
2

)
> 0.5,

where σ r,N is the standard deviation in the correlation function
values around point r in a window of size N (where N is taken
to be 150% greater than the first nearest neighbor) and where
σ AWGN is the estimate standard deviation of the AWGN over
the entire correlation function.20

Region of interest average shape (inset in Fig. 3(a))
displays anisotropies as well as shape distribution of the
ROI. Nearest neighbor angle distribution (Fig. 3(c)), together
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FIG. 3. Analysis of membrane displayed in (a). Green shows automated segmentation while inset shows average pore shape. (b) Nearest neighbor count,
(c) nearest neighbor angle distribution, (d) unit cell area distribution, (e) pore area distribution, (f) radial two-point correlation function, and (g) border width
distribution. Red line symbolizes the automatically determined length-scale (domain length is 987 nm).

with the radial two-point correlation function, allows com-
parison to idealized lattice values, which can be used as
a “quality” comparison between different samples. Average
ROI area (Fig. 3(e)) gives information about ROI size, which
is one of the most used values extracted from SEM imag-
ing of self-assembled nanostructures. These values, when ex-
tracted manually, tend to be biased by human selection to-
wards what is considered “typical.” While this bias is not
significant for highly uniform arrays of ROIs, when the ROI
size distribution is not symmetric human “experts” often se-
lect the most common size as the “mean” rather than the
true mean. Furthermore, for non-uniform ROIs different hu-
man “experts” may use different personal criteria to find the
“mean” values thus making comparison across the literature
difficult. Our algorithm presents a completely automatic way
of measuring this value and its uncertainty. Unit cell area
distribution (Fig. 3(d)) presents information on the unifor-
mity of the lattice. Finally, the number of nearest neighbors
(Fig. 3(b)) gives additional information on the “quality” of
the lattice.

It is important to note that the ROI at the edges of
the image may sometimes bias the statistics. To overcome
this, MIST counts edge objects whose size is comparable to
those of objects on the inside and discards those that are too
small or too big. The two-point correlation function, which
is very sensitive to finite size effects, is properly corrected
to take into full account the edge effects due to finite image
size.

Once the built-in analysis is performed, the raw results
together with the per-pixel segmentation data are saved in
MATLAB’s .mat format. Additional analysis can be applied
by loading the .mat file. Most of the parameters needed
for these additional analyses, such as ROI labeling, cen-
troid positions, and morphological properties, are already
computed during the initial segmentation and are readily
available.

IV. EXAMPLE APPLICATIONS

A. Anodic aluminum oxide structures

The original application of MIST was analysis of SEM
images of AAO and AAO based nanostructures (Figs. 1–3).
AAO membrane templates are used in many applications of
large scale nanodot, nanopillar, and antidot fabrication.21–25

Proper understanding of the nanostructure morphological pa-
rameters is critical for designing devices with predictable
magnetic properties, superconducting pinning, and metama-
terial behavior.26, 27

Interesting magnetic and electrical properties can be ob-
tained in spatially anisotropic nanostructures.28, 29 Templating
such nanostructures using AAO has been an active area of
research and led to methods based on selective nucleation,
template imprinting, and partial surface occlusion.30–33 A
SEM image and analysis of nanodots generated by electron
beam physical vapor deposition (EBPVD) through an asym-
metric AAO template are presented in Fig. 4. The template
itself was made by depositing a metal layer at 45◦ to the
surface of the membrane, which partially closed the pores.
The average pore shape (insets in Fig. 4(a)) can be used to
visualize the nanodot anisotropy. The two-point correlation
function (Fig. 4(b)) shows that the lattice parameters of the
asymmetric dots are the same as that of the parent, symmetric,
membrane.

B. Porous silicon

Like AAO, porous silicon has been widely used for
molecular confinement and nanostructure templating. It
has applications in spectroscopic sensing, battery anode
fabrication, and microfluidic devices.34–37 Fig. 5 presents an
example of analysis of porous silicon. SEM of the porous
sample and its segmentation is presented in Fig. 5(a). From
the two-point correlation function (Fig. 5(b)), it can be seen
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FIG. 4. (a) Segmentation of SEM data of asymmetric Ni dots produced us-
ing AAO shadow mask. Inset shows average pore shape, which demonstrates
elliptical shape anisotropy. White arrow shows the major axis. (b) Two-point
correlation function of the asymmetric nanodot sample (black) and the parent
membrane pores (red).

that unlike porous alumina (Figs. 3(f) and 4(b)) porous
Si does not have a discernible lattice order. An important
parameter in many porous silicon applications is mean wall
thickness (Fig. 5(c)). This value is difficult to ascertain
manually due to large variance in wall thicknesses and human

FIG. 5. (a) Segmentation of porous silicon film. (b) Two point correlation
function of pore centers. (c) Distribution of border width. (SEM images cour-
tesy of Professor Mike Sailor, UCSD.)

selection bias of “typical” walls. Furthermore, because of
large variations in pore sizes and spacing, simply comparing
pore average diameter to inter-pore distance is not useful.
MIST computes the full wall thickness distribution from
which the true mean, median, and standard deviation can be
extracted.

C. Vortices in superconductors

Magnetic Force Microscopy (MFM) of vortices in a
superconductor can be quantitatively analyzed with MIST.
It has been shown that magnetic defects can pin vortices
on type II superconductors.38, 39 Much research has been
published studying magnetic pinning dependence on defect
geometries.40, 41 Control of defect geometry can affect mag-
netic matching fields, increase superconducting critical cur-
rent, and change the superconductor’s critical temperature.42

Fig. 6(a) presents MFM micrographs of superconducting vor-
tices on a 100 nm Nb film grown by sputtering on sapphire
substrate without addition of pinning sites in a 50 Oe exter-
nal field. MIST correctly segments individual vortices even
though global image contrast is poor. Inspection of the two-
point correlation function (Fig. 6(b)) provides the long range

FIG. 6. (a) Segmentation of Magnetic Force Microscopy images of super-
conducting vortices on 100 nm thick Nb film on Al2O3 field cooled at
50 Oe to 2 K. (b) Two point correlation function of vortices (red line indi-
cates domain size). (c) Vortex area distribution. (MFM courtesy of H. Wen,
Nanjing University.)
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FIG. 7. (a) Segmentation of AFM data on grain structure of 50 nm thick
Cobalt Phthalocyanine (CoPc) film. (b) Fluorescent confocal images of Hen-
rietta Lacks (HeLa) cervical cancer cells (image courtesy of S. Sandoval,
UCSD). (c) Fluorescent confocal images of neuronal somata and astrocytes.
(d) Segmentation of STM images of TCPQ and zoom in on selected region
(white square) (image courtesy of C. Urban, UAM, Spain).

characteristics. For example, the nearest neighbor peak is at
750 nm, while ideal close packing predicts 680 nm, simi-
larly, the second nearest neighbor peak is at 1360 nm, while
the ideal is 1180 nm. The difference between ideal and the
measured values arises because superconducting vortex dis-
tribution is strongly mediated by defect pinning. These kinds
of precise nearest and second nearest neighbor measurements
are very difficult to do manually using NIH ImageJ and simi-
lar software because the distribution of nearest neighbors is
wide and changes from region to region. A comparison of
Fig. 6(b) (vortex distribution) with Fig. 5(b) (pores in Si dis-
tribution) shows that unlike a truly disordered sample (porous
Si) there is short-range order in the vortex lattice. Finally,
analysis of vortex size (Fig. 6(c)) can be used to determine
local penetration depth of the superconductor.

D. Biological and organic material

MIST analysis and segmentation capabilities can be ap-
plied to a very wide range of applications. For many applica-
tions, user-built analysis modules may be used in conjunction
with the built-in tools. Fig. 7(a) presents segmentation of an
organic film AFM micrograph. These types of images are usu-
ally very difficult to segment due to low contrast. Figs. 7(b)
and 7(c) show segmentation of a biological sample. These
types of images present morphologically diverse regions of
interest which require robust morphological filters for proper
segmentation. Figure 7(d) presents a STM image of organic
molecules. In this example, depending on the final threshold,
MIST can be used to segment either the total area covered by
the molecules (see figure) or to only select the active lobes
(not pictured).

V. CONCLUSION

MIST is a novel and robust segmentation and analysis
tool. It can be applied to images produced by a wide variety

of techniques, such as Scanning Electron Microscopy, Atomic
Force Microscopy, Magnetic Force Microscopy, and Confo-
cal Fluorescent Microscopy. We demonstrate that MIST can
be used for physical, chemical, and biological problems. This
universality is due to the algorithm’s relative insensitivity to
overall image contrast and region of interest morphology. The
software is highly flexible and can be easily modified to in-
clude user-based analysis. This user-based analysis can build
on both the segmentation and a large amount of raw infor-
mation collected about the regions of interest on the image.
A copy of MIST, both the source code and a compiled ver-
sion that does not require MATLAB, can be requested at
http://ischuller.ucsd.edu/MIST/.
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